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Abstract 

Introduction: Magnitudes of change in endothelial function research can be articulated using effect size statistics. 
Effect sizes are commonly used in reference to Cohen’s seminal guidelines of small (d = 0.2), medium (d = 0.5), and 
large (d = 0.8). Quantitative analyses of effect size distributions across various research disciplines have revealed values 
differing from Cohen’s original recommendations. Here we examine effect size distributions in human endothelial 
function research, and the magnitude of small, medium, and large effects for macro and microvascular endothelial 
function.

Methods: Effect sizes reported as standardized mean differences were extracted from meta research available for 
endothelial function. A frequency distribution was constructed to sort effect sizes. The 25th, 50th, and 75th percen-
tiles were used to derive small, medium, and large effects. Group sample sizes and publication year from primary stud-
ies were also extracted to observe any potential trends, related to these factors, in effect size reporting in endothelial 
function research.

Results: Seven hundred fifty-two effect sizes were extracted from eligible meta-analyses. We determined small 
(d = 0.28), medium (d = 0.69), and large (d = 1.21) effects for endothelial function that corresponded to the 25th, 50th, 
and 75th percentile of the data distribution.

Conclusion: Our data indicate that direct application of Cohen’s guidelines would underestimate the magnitude of 
effects in human endothelial function research. This investigation facilitates future a priori power analyses, provides a 
practical guiding benchmark for the contextualization of an effect when no other information is available, and further 
encourages the reporting of effect sizes in endothelial function research.
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1 Introduction
Changes in arterial vasomotion and calibre are, in large 
part, mediated by a functioning vascular endothelium 
that senses mechanical, tensegral, and molecular stimuli 
in the vessel lumen [1]. Measures of endothelial function 
are therefore commonly derived from data that quantify 
changes in vasomotor capacity and blood flow [2, 3]. Such 
data can be treated using traditional frequency-based 

statistics which are common practice in the biomedical 
sciences [4]. Frequency-based statistical methods facili-
tate binary interpretations of outcomes, and enable scien-
tists to reject, or fail to reject, the null hypothesis [5–7]. 
While these analyses have both practical and theoretical 
value [8], researchers are often interested in assessing 
and reporting on the magnitude of effects; particularly 
as they pertain to outcomes in the biomedical sciences, 
including endothelial function.

The use of effect sizes in biomedical literature has 
increased over the last two decades (Fig. 1). Effect sizes, 
such as standardized mean differences (SMD), facili-
tate a priori power analyses, articulate the magnitude 
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of effects, and encourage the progression of science 
regardless of the units of the original outcome meas-
ures [6, 9]—an especially relevant feature given the 
range of methods [2] and calculations [3] that are used 
for the representation of endothelial function [6, 10]. 
Despite the burgeoning popularity of effect size assess-
ment and reporting, an efficient and standardized 
interpretation of effect sizes are limited by a paucity of 
guiding recommendations [9]. Durlak [10] eloquently 
states that the best way to interpret effect sizes is to use 
context-specific and practical interpretations that are 
guided by the uniqueness of an experimental architec-
ture. Failing this standard, it is also useful to contextu-
alize an effect using indices derived from the broader 
field of literature [9, 11, 12]. Seminal benchmarks for 
small (d = 0.2), medium (d = 0.5), and large (d = 0.8) 
effects were established by Cohen [11], who reasoned 
that these values serve as a last-resort interpretation 
for effect sizes in the absence of any other useful infor-
mation [10, 12]. These benchmarks were developed for 
use in the behavioural sciences and described accord-
ing to the extent to which the effect magnitudes were 
visually perceptible [11–13]. Empirical analysis of effect 
size distributions in various sub-disciplines of psychol-
ogy [14], as well as in the biomedical sciences [12, 15–
17], have shown distributions that differ from Cohen’s 
recommendations.

We, therefore, examined effect size distributions in 
endothelial function to facilitate future a priori power 
analyses, provide a practical guiding benchmark 
for the contextualization of an effect when no other 

information is available, and further encourage the 
reporting of effect sizes in human endothelial function 
research.

2  Materials and Methods
We adhered to methods that have been reported in prior 
research works [12, 14–17]. All analysis was conducted 
using the R statistical environment [18], and the code 
and original data to reproduce this work is made publicly 
available at the following online repository: https:// doi. 
org/ 10. 5683/ SP2/ BEVNRG.

2.1  Data Extraction and Preparation
Meta-analyses were identified through a PubMed search 
conducted in April 2021 using the following search 
terms: [“endothelial function” (Title/Abstract)] AND 
[meta-analy*(Title/Abstract)]. Meta-analyses were 
screened for eligibility, and the included meta-analyses 
are accessible as supplementary material. Effect sizes, 
and their corresponding lower and upper limits, were 
extracted from any meta-analysis that reported a stand-
ardized mean difference effect size (SMD; Cohen’s d or 
Hedges’ g) for endothelial function assessed via changes 
in vasomotion or changes in blood flow. Meta-analyses 
that included outcomes related to pulse-wave velocity or 
augmentation index were excluded as these outcomes, 
though correlated with measures of endothelial func-
tion, also represent measures of arterial stiffness and 
structure and therefore beyond the scope of this work 
[19]. We reported the absolute value of the effect sizes as 
the objective of our investigation was to query the mag-
nitude, and not direction, of the reported effects for the 
effect size distribution analyses [12, 15].

Group sample sizes and the region of vascular assess-
ment (microvascular or macrovascular) were extracted 
from descriptive tables or figures in the meta-analysis. In 
the event that this information was missing or ambigu-
ous, the details were either retrieved from the primary 
article or coded as unavailable. We also recorded the 
category of the studied biological process that cor-
responded to the effect size extracted from the meta-
analyses to appreciate the range of investigation topics 
included in the data. The biological process categories 
were determined according to the title and topic of the 
meta-analysis.

A Hedges’ g correction was applied to provide a con-
servative estimation of Cohen’s d values; particularly for 
those based upon small sample sizes or predicated upon 
biased sample size estimates [6]. Cohen’s d values were 
converted to Hedges’ g using a formula derived from Lak-
ens [9], where n1 and n2 denote group sample sizes:
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Fig. 1 Increased interest in effect sizes in scientific research over the 
last two decades as evidenced by articles containing the keyword 
‘effect size’ in PubMed. Figure created using the ‘EuropePMC’ package 
[41]
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We also solved for Cohen’s d from the above equation 
to enable us to convert effect sizes that were originally 
reported as Hedges’ g in meta-analyses to Cohen’s d, such 
that all effect sizes could be expressed as either a Cohen’s 
d or Hedges’ g effect statistic. If a Hedges’ g effect size was 
reported with no indication of sample size, then the sta-
tistic was kept as Hedges’ g in our analysis [14].

Duplicate effect sizes were coded as such and subse-
quently removed from analysis. Effect sizes larger than 
eight were deemed to be unrealistically large and classi-
fied as outliers, and therefore removed from our analysis 
to mitigate the influence of outlying data on effect size 
distributions. We chose to classify effect sizes larger than 
eight as outliers because this value corresponded to the 
largest effect size reported among 6,447 effect sizes from 
social psychology [14].

2.2  Statistical Analyses
Cohen’s original work defined that small and large effect 
sizes are equidistant from the medium effect size [12, 
20]. Thus, we rank-ordered and plotted effect sizes from 
smallest to largest using a frequency distribution and 
found the effect sizes at the 25th, 50th, and 75th per-
centiles. We then subdivided the data according to the 
assessment of vessel type (macrovascular or microvas-
cular), and according to the modality used to measure 
endothelial function [ultrasonography, plethysmogra-
phy (peripheral arterial tonometry was included in this 
category due to its classification as a plethysmographic 
method [21, 22]), laser doppler, or other measures such 
as capillaroscopy and near-infrared spectroscopy] and 
repeated the aforementioned analysis. The ‘psych’ pack-
age [23] was used to describe the skew and kurtosis of 
each distribution.

We examined the bivariate relationships between 
effect size magnitude and year, and effect size magni-
tude and the logarithm of sample size. We plotted the 
reported effect sizes as a function of the year in which 
they were published to visualize any changes in the mag-
nitude of effect sizes over time, as measurement meth-
ods and guidelines for endothelial function change over 
time [24, 25]. A locally estimated scatterplot smoothing 
curve with a smoothing parameter span set to ƒ = 0.75 
was employed to visualize the relationship between 
effect size magnitude and year of publication. Locally 
estimated scatterplot smoothing was used to detect any 
fluctuation in effect size magnitude associated with the 
publication of guidelines for the assessment of endothe-
lial function using flow-mediated dilation (in 2011, see 
[24]; and in 2019, see [25]). Some meta-analyses reported 

Hedges′g = Cohen′s d ×

(

1−
3

4(n1 + n2)− 9

) multiple effect sizes from the same study and thereby 
include correlated observations that violate assumptions 
of independence. To mitigate the undue influence of cor-
related data, we computed regression coefficients (β) and 
adjusted standard errors  (SEadj) using vce(cluster) syntax 
on STATA (version 17; StataCorp, College Station, TX, 
USA) as well as a clustered bootstrap 95% confidence 
intervals (95% CI) based on 10,000 samples using the 
‘jtools’ [26] and ‘ClusterBootstrap’ [27] packages available 
in the R environment.

A series of a priori power calculations for independent 
and paired samples t tests, powered to detect the small, 
medium, and large effect sizes for endothelial function 
research, were computed using the ‘pwr’ package [28]. 
A visualization of the sample sizes required to reliably 
detect a given effect size, for a range of statistical power, 
for independent samples and paired t tests was con-
structed. Each power calculation was determined assum-
ing two-tailed analyses and α set to 0.05.

The ‘metameta’ package [29] was used to visualize the 
median power of all meta-analyses that are included in 
our work. The evidential value of each meta-analysis was 
displayed across a range of possible true effect sizes from 
δ = 0.1 to δ = 1.0, as well as for the observed summary 
effect size reported in the meta-analysis.

3  Results
The PubMed search query produced a total of 262 scien-
tific articles. An additional thirteen articles were identi-
fied using keyword searching, thereby resulting in 275 
articles that were assessed for eligibility (Fig.  2). After 
screening, 40 meta-analyses containing 760 effect sizes 
satisfied our eligibility criteria and were included in this 
analysis. After duplicate effect sizes (n = 6), and outlying 
effect sizes larger than eight (n = 2) were removed, 752 

Fig. 2 Flowchart depicting meta-analysis inclusion based on a 
PubMed search query entered April 2021. SMD standardized mean 
difference
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unique effect sizes were extracted and included in the 
analysis.

3.1  Effect Size Distributions
We first analyzed the overall effect size distribution for 
endothelial function research (Fig. 3). We found that the 
25th, 50th, and 75th quantiles corresponded to Cohen’s 
d effect sizes of d = 0.28 (small), d = 0.69 (medium), 
and d = 1.21 (large), respectively. Next, we separated 
the data according to the vessel bed that was analyzed, 
being either macrovasculature or microvasculature, and 
repeated the aforementioned distribution analysis. We 
found different effect size distributions from the arterial 

region subgroup analysis for macrovascular (n = 544; 
skewness = 2.61; kurtosis = 8.27) and microvascular 
(n = 205; skewness = 2.99; kurtosis = 9.85) endothelial 
function. The small (macrovascular d = 0.34; microvas-
cular d = 0.20), medium (macrovascular d = 0.76; micro-
vascular d = 0.49), and large (macrovascular d = 1.31; 
microvascular d = 0.90) effect sizes for the macrovascu-
lature were consistently larger than that of the microvas-
culature (Fig. 4A). We also grouped data according to the 
method used to estimate endothelial function, includ-
ing plethysmographic techniques (n = 98, skew = 3.23, 
kurtosis = 12.08), laser doppler (n = 60, skew = 2.85, 
kurtosis = 8.39), ultrasonography (n = 559, skew = 2.64, 
kurtosis = 8.53), and other methods (n = 29, skew = 1.67, 
kurtosis = 1.74). The effect size distribution for plethys-
mography (small = 0.20, medium = 0.48, large = 0.84) 
revealed magnitudes similar to Cohen’s guidelines 
whereas all other imaging modalities produced small, 
medium, and large magnitudes that were comparatively 
larger (Fig.  4B). We identified four categories that rep-
resent the range of biological processes that were stud-
ied in the included effect sizes. A distribution depicting 
these four categories, including exercise (n = 150), phar-
macological supplementation and dietary interventions 
(n = 280) pathophysiological processes (n = 273), and 
other processes (such as menstruation and behavioural 
interventions; n = 49), is included as supplementary data.

3.2  Correlates of Effect Size
We sought to investigate differences in the magnitude 
of reported effect sizes for endothelial function across 
the individual study publication year and sample size. 
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Fig. 3 Histogram depicting the effect size distribution for endothelial 
function research. Vertical red lines at the 25th, 50th, and 75th 
percentiles correspond to small (d = 0.28), medium (d = 0.69), and 
large (d = 1.21) Cohen’s d effect sizes
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Fig. 4 Panel A depicts a density plot of the effect size distributions for macrovascular (n = 544; skewness = 2.61; kurtosis = 8.27) and microvascular 
(n = 205; skewness = 2.99; kurtosis = 9.85) endothelial function. Panel B depicts a density plot of the effect size distributions for different measures 
used to assess endothelial function such as ultrasonography (n = 559, skewness = 2.64, kurtosis = 8.53), plethysmography (n = 98, skewness = 3.23, 
kurtosis = 12.08), laser doppler (n = 60, skewness = 2.85, kurtosis = 8.39), and other measures (n = 29, skewness = 1.67, kurtosis = 1.74). Cohen’s d 
values greater than 4.0 were not shown for visualization purposes
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While locally estimated scatterplot smoothing showed a 
slight upward inflection in effect size magnitude around 
2009 and a downward inflection in effect size magni-
tude around 2011 (Fig.  5A), the reported effect sizes 
generally remained consistent over time [β =  − 0.01, 
p = 0.234,  SEadj = 0.01, 95% CI (− 0.03, 0.01)]. A weak 
negative relationship was observed between the mag-
nitude of reported effect size and logarithm of sam-
ple size [β =  − 0.19, p = 0.012,  SEadj = 0.07, 95% CI 
(− 0.33, − 0.04)]. Clustered bootstrapping procedures 
did not change any interpretations of the aforemen-
tioned bivariate relationships; no association between 
effect size and year [bootstrapped 95% CI (− 0.03, 0.01)], 
and a weak negative relationship between effect size 
and the logarithm of sample size [bootstrapped 95% CI 
(− 0.35, − 0.06)] persisted.

3.3  A priori Power Analyses
The median sample sizes for treatment and control 
groups in endothelial function research were 21 and 20, 
respectively. Assuming a type 1 error rate of 5% and a 
two-tailed analysis, these sample sizes allow the reliable 
detection (or rejection) of large effects only (d = 1.21, 
power = 0.965). These median sample sizes are, however, 
inadequately powered to detect the presence of small 
(d = 0.28, power = 0.141) and medium effects (d = 0.69, 
power = 0.577) in endothelial function research. We pre-
sent a priori power analysis calculations for independent 
and paired samples t tests based on our derived effect size 
distributions in Table 1. Figure 6 provides a visualization 
of the relationship between sample size and effect sizes 
that can be reliably detected using 80% statistical power.

3.4  Statistical Power of Meta‑Analyses
The median reported summary effect size across all of 
the included meta-analyses was 0.14 (mean =  − 0.08, 
min =  − 6.26, max = 2.41). We found that the median 
statistical power to detect the reported summary 
effect size was approximately 66.6% (mean = 60.7%, 
min = 5.0%, max > 99.9%). The median power to detect 
a range of plausible true effect sizes, from δ = 0.1 to 
δ = 1.0, across the included meta-analyses is displayed 
in Fig. 7 [30]. Our data shows that most meta-analyses 
in both microvascular and macrovascular endothe-
lial function research can reliably detect medium-to-
large summary effect sizes, as the median power for an 
assumed true effect of δ = 0.9 was approximately 76.8% 
(mean = 72.6%, min = 26.5%, max = 98.4%). The corre-
sponding power to detect the entire range of plausible 
true effect sizes from δ = 0.1 to δ = 1.0 is made available 
in the supplementary data.
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Fig. 5 Correlates of effect sizes in endothelial function research. Panel A shows no relationship between Cohen’s d and the year of primary study 
publication. The vertical red lines indicate the years in which the guidelines for the assessment of macrovascular endothelial function were 
published. Panel B depicts a weak negative relationship between Cohen’s d and the logarithm of sample size

Table 1 a priori sample size calculations to detect small, 
medium, and large effects for endothelial function research

Tests were calculated using 80% power, and assuming a two-tailed test and 
α = 0.05. Researchers may use alternative levels of statistical power (Fig. 6), 
however, 80% typically represents the minimally acceptable level of statistical 
power (Quintana [12])

Effect size Paired samples t test 
(n = number of pairs)

Independent 
samples t test 
(n = per group)

Small (d = 0.28) 102 202

Medium (d = 0.69) 19 34

Large (d = 1.21) 8 12
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4  Discussion
We report a novel effect size distribution for endothelial 
function research and identify small (d = 0.28), medium 
(d = 0.69), and large (d = 1.21) effects that correspond 
to the 25th, 50th, and 75th percentiles of effect sizes 
reported in endothelial function research. These values 
may serve as a benchmark to interpret effect sizes spe-
cific to endothelial function in the absence of any other 
context or information. Our analyses also indicate that 
future studies investigating endothelial function may 
benefit from higher-powered statistical designs so that 
small and medium effects can be reliably detected.

Cohen originally proposed d = 0.2, d = 0.5, and d = 0.8 to 
constitute small, medium, and large effects. These bench-
marks were originally intended for the psychological sci-
ences and described in terms of the extent to which they 
are visually perceptible [11, 12]. Empirically derived effect 
size distributions within the biomedical sciences differ from 
Cohen’s proposed guidelines. For instance, effect size dis-
tributions derived from rehabilitation literature, gerontol-
ogy, and heart rate variability case–control studies show 
both overestimations and underestimations of what Cohen 
classified as small, medium, and large effects [12, 15, 17]. 
These observations, together with our derived benchmarks 
for endothelial function research, support the previously 
reported notions that Cohen’s guidelines may not be gen-
eralizable to other biomedical fields. Therefore, research-
ers interested in contextualizing their results within the 
broader field of endothelial function research may, instead, 
be guided by the effect size distribution and indices that we 
provide.

Different distributions in effect magnitude were observed 
between macrovascular and microvascular endothe-
lial function (Fig.  4A). The distribution for macrovascu-
lar endothelial function had a smaller skew and kurtosis 

than the distribution for microvascular endothelial func-
tion, indicating a higher density of small effect sizes in the 
microvasculature compared to the macrovasculature. We 
speculate that this disparity is attributable to the heteroge-
neity that exists in methods used to assess endothelial func-
tion. Indeed, differences in endothelial function based on 
the method of assessment have been previously described 
[31]. Molecular differences in signal transduction mecha-
nisms within the micro- and macrovascular endothelium 
have been extensively reported. For instance, the dilatory 
influence of endothelial-derived hyperpolarizing factors 
have been shown to be more prominent within the micro-
vasculature [2, 32]; whereas nitric oxide is a large contribu-
tor to vasodilation in the macrovasculature [33]. It may be 
that heterogeneity in assessment methods and mechanisms 
contribute to the observed differences in the reported 
effect size distributions, however, a thorough description 
of these methods and mechanisms is beyond the scope of 
this work. We direct interested readers to further research 
that discusses the methods used to assess microvascular and 
macrovascular endothelial function, and how these meth-
ods and mechanisms may associate with differing vascular 
responses [2, 34, 35].

We observed that the magnitude of reported effect sizes 
in human endothelial function research remained con-
stant over a range of publication years, despite the intro-
duction of different guidelines for methods of assessing 
endothelial function. Given that the most recent guide-
lines for the assessment of endothelial function were 
released in 2019, more time may be needed for any 
impact of those guidelines on effect magnitude to mani-
fest. We also found a weak negative relationship between 
sample size and effect size. This finding is consistent with 
the relationships between sample size and effect magni-
tude as identified in previous reports [13, 14]. That the 

Fig. 6 Relationship between sample size (n = number of pairs) and effect size for a paired samples t test (Panel A), and sample size (n = number in 
each group) and effect size for independent samples t test (Panel B), across three different levels of statistical power. Fewer participants per group 
are required for a given effect size using the paired samples t test. Figures assume a two-tailed analysis, with α = 0.05. Adapted from Yu and Yagle  
[42]
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Fig. 7 The statistical power of the observed summary effect size in each of the included meta-analyses, and the median statistical power for 
included meta-analyses displayed across a range of plausible true effect sizes (from δ = 0.1 to δ = 1)
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negative relationship between sample size and effect 
magnitude persists even amongst pre-registered stud-
ies [13] suggests that publication bias, or potential ‘file 
drawer’ effects, may not be the principal factor underly-
ing this finding [36]. Schäfer and Schwarz [13] speculate 
that the observed relationship may also be attributable 
to the fact that larger sample sizes are required to detect 
smaller effects, and thus the contrary, that smaller sam-
ples are generally sufficient to detect larger effect sizes.

Much existing endothelial function research may be 
underpowered to detect a plausible range of true effect 
sizes; particularly those of small and medium magni-
tude. The median sample size for treatment and con-
trol groups in endothelial function research is similar 
to those reported in heart rate variability and biomedi-
cal gerontology [12, 15], and sufficient only to detect 
the large effects for endothelial function that we report 
herein. Furthermore, the median power of meta-analyses 
included in this investigation indicates that most meta-
analyses in endothelial function research can only relia-
bly detect medium-to-large-sized effects. Future research 
in endothelial function should consider the use of tech-
niques that increase statistical power. Augmented and 
effective definitions of statistical power can be achieved, 
for instance, by heeding suggestions to increase group 
sample sizes when appropriate, or by using sequen-
tial testing methods, described in further detail else-
where [37, 38]. We also include Fig.  6 which shows the 
sample sizes required to detect a given Cohen’s d effect 
size across a range of type 2 error rates (β = 0.7, 0.8, 
and 0.9; α = 0.05), for paired and independent samples t 
tests. Improving statistical power will bolster the qual-
ity of the interpretation of significant and non-significant 
results and increase the likelihood of replicable results in 
endothelial function research.

Several limitations in this investigation warrant 
acknowledgement. First, effect size distributions provide 
an efficient and practical guide to interpret effect mag-
nitudes and for a priori power analysis. However, this 
work should not be interpreted as an endorsement to 
exclusively interpret endothelial function research in the 
context of the reported effect size benchmarks. Priority 
should always be given to experiment-specific interpreta-
tions of effect magnitude since each experimental ques-
tion and design is unique [10]. Second, pre-registered 
publications have been shown to produce smaller effect 
size estimates, and thus, a lack of pre-registered studies in 
endothelial function research may distort the presented 
distributions [36]. Therefore, it would be interesting to 
repeat our analysis as pre-registration becomes more 
popular in endothelial function research and to note dif-
ferences in effect size distributions between pre-regis-
tered studies and studies without pre-registration [13]. 

Lastly, we included effect sizes reported as standardized 
mean differences from meta-analyses (Cohen’s d and 
Hedges’ g), and excluded other statistics such as risk ratios 
and correlation coefficients. We also followed previous 
analyses [14–16] and included effect sizes from different 
study designs in our investigation. As first noted by Quin-
tana [12], the inclusion of different study designs may 
introduce different biases into the results and effect size 
distributions; particularly considering the calculation of 
effect sizes from repeated measures data where the cor-
relation between outcomes is unknown [39]. However, it 
is also important to acknowledge the robustness and util-
ity inherent in effect sizes derived from repeated meas-
ures, and that excluding effect sizes on the basis of study 
design may also eliminate potentially valuable informa-
tion [40]. Nonetheless, and in accordance with precedent 
established by Quintana [12] and Kinney, Eakman, and 
Graham [17], we believe a large number of effect sizes 
and study designs included herein to be sufficiently repre-
sentative of the distribution of standardized mean differ-
ences reported in human endothelial function research.

5  Conclusion
Our analysis serves as a benchmark to contextualize the 
magnitude of effects within endothelial function litera-
ture, in addition to experiment-specific interpretations 
of the effect size relevance. This work will facilitate 
a priori power analyses and sample size calculations 
when no other information is available to determine a 
small, medium, or large effect. This report contributes 
to a general appreciation for the effect size distributions 
in endothelial function research and may consequently 
encourage the use of effect sizes in the endothelial 
function literature.
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