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Abstract 

Background  Arteriosclerosis significantly impacts cardiovascular health. Pulse wave velocity has emerged as a valu-
able non-invasive method for assessing arterial stiffness. A negative association between carotid-femoral pulse wave 
velocity (cfPWV) and cerebral blood flow has been reported, suggesting a link between arterial stiffness and reduced 
cerebral blood flow. We aimed to determine whether a correlation exists between cfPWV and blood flow in the inter-
nal carotid artery (ICA) and to assess the influence of age and body mass index (BMI) on cfPWV in healthy individuals.

Methods  Thirty-six healthy subjects (23 males and 13 females) with no underlying medical conditions and who 
were not on regular medications were enrolled in the study. Arterial stiffness was assessed by measuring the cfPWV 
using Vicorder® software. ICA blood flow parameters were measured using high-resolution ultrasound. ICA diameter 
was measured using automated edge-detection software.

Results  Significant positive correlations were found between cfPWV and age (Spearman’s rho coefficient 0.33, 
p = 0.04), BMI (Spearman’s rho coefficient 0.32, p = 0.05), and ICA diameter (Pearson’s coefficient 0.35, p = 0.03). No 
significant correlations were observed between cfPWV and ICA peak systolic velocities (PSV; p = 0.22), or resistive index 
(RI; p = 0.76), nor between age and ICA diameter (p = 0.42), PSV (p = 0.09), or RI (p = 0.89).

Conclusion  Our findings demonstrate a positive correlation between arterial stiffness, age, and BMI in a healthy 
population, along with an association between increased ICA diameter and arterial stiffness. The lack of correlation 
between cfPWV and ICA blood flow parameters suggests that the ICA may dilate as a compensatory mechanism 
to mitigate the effects of increased arterial stiffness, ensuring optimal cerebral blood flow in healthy individuals.
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1  Introduction
Arteriosclerosis is characterized by arterial wall thick-
ening and hardening, which has significant impacts on 
cardiovascular health and is associated with various 

diseases, such as atherosclerosis, chronic kidney disease, 
vascular dementia, and Alzheimer’s disease [1–3]. The 
condition primarily affects the elastic arteries, leading 
to a loss of elastic fibers and increased fibrosis in arterial 
walls due to repetitive cyclic stress [4].

Cardiovascular function gradually declines with age, 
due to age-related changes within the cardiovascular 
system. Atherosclerosis, congenital and rheumatic heart 
diseases, and hypertension are major contributors to 
disability and mortality among middle-aged and elderly 
individuals, accounting for over 40% of deaths in those 
aged 65 years and over [5]. Vascular age, determined by 
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measuring arterial stiffness, provides valuable insights 
into cardiovascular disease (CVD) risk [6]. Obesity and 
related factors such as dyslipidemia, hepatic steatosis, 
and insulin resistance, have been proposed as poten-
tial mechanisms contributing to the higher incidence of 
CVD in overweight individuals, and are associated with 
increased arterial stiffness [7–9].

Pulse wave velocity (PWV) has emerged as a valu-
able non-invasive method for evaluating arterial stiff-
ness, whereby increased arterial stiffness leads to higher 
PWV values [10]. Its simplicity, affordability, and repro-
ducibility have contributed to its widespread use in epi-
demiological research, enabling the evaluation of arterial 
stiffness and estimation of CVD risk [11]. PWV has been 
clinically associated with adverse cardiovascular out-
comes, independent of conventional risk factors such as 
aging, hypertension, diabetes, dyslipidemia, obesity, and 
smoking [12].

PWV is determined by measuring the transit time 
of the arterial waveform between two points along a 
known distance [13]. The pathway between the carotid 
and femoral arteries, known as the carotid-femoral PWV 
(cfPWV), is a referent measure of arterial stiffness and 
vascular aging. The path from carotid to femoral sites 
consists of approximately 60% aorta and 40% femoral 
artery, thus being sensitive to aging in both central and 
peripheral arteries [14]. For cfPWV assessments, the 
transit time is recorded as the time between the carotid 
and femoral pressure waveforms [15]. Due to the impor-
tance of cfPWV as a robust predictor of cardiovascu-
lar events, international reference standards have been 
established to enable meaningful comparisons across dif-
ferent populations, age groups, and risk factor categories 
[9, 16]. Previous studies have demonstrated an associa-
tion between increased cfPWV and cerebral small vessel 
disease, encompassing conditions like cerebral micro-
bleeds, white matter hyperintensity, and lacunar infarc-
tion. Cerebral small vessel disease is frequently observed 
in elderly individuals and is a significant vascular con-
tributor to stroke, cognitive impairment, and geriatric 
syndrome [17–20]. Previous studies have suggested that 
PWV is associated with cognitive dysfunction and the 
progression of cognitive decline in elderly individuals 
[21, 22]. In addition, PWV has been linked to calcifica-
tion, stenosis, and the occlusion of large cerebral arteries. 
Elevated cfPWV has been associated with cerebral artery 
calcification or stenosis in individuals with hypertension 
[23] and patients experiencing acute ischemic stroke [24]. 
Furthermore, carotid intima-media thickness serves as 
an indicator of atherosclerosis and is linked to coronary 
artery disease and stroke [25, 26], with studies demon-
strating a positive linear correlation between carotid 
intima-media thickness and cfPWV [27–29].

A recent study by Liu et al. (2021) evaluated the associ-
ation between vascular dysfunction and intracranial vas-
cular health, showing a significant negative association 
between cfPWV and cerebral blood flow in hypertensive 
males, suggesting a link between arterial stiffness and 
cerebral blood flow decline [30]. However, there is a lack 
of studies that specifically investigated the association 
between cfPWV and internal carotid artery (ICA) blood 
flow. Therefore, this study aims to determine the correla-
tion between cfPWV and ICA blood flow, as well as the 
influence of age and body mass index (BMI) on cfPWV in 
healthy individuals.

2 � Methods
2.1 � Study Design and Assessment
This pilot trial was conducted in accordance with the 
Declaration of Helsinki and the International Conference 
on Harmonization of Good Clinical Practice. The study 
was approved by the Ethics Research Committee at the 
University of Nottingham (Reference No: E1411201). 
Healthy individuals without underlying medical condi-
tions and not taking regular medication were recruited. 
Participants were instructed to abstain from taking any 
vitamin supplements for 72 h and to avoid exercise, 
medications, caffeine, alcohol, and cigarette/e-cigarette 
smoking for 24 h prior to measurement. cfPWV and ICA 
blood flow measurements were taken in a room main-
tained at 22–24 °C, after a minimum rest period of 10 
min in the supine position following an overnight fast 
[31, 32].

2.2 � Measurements of cfPWV and ICA Blood Flow
Arterial stiffness was assessed by measuring the PWV 
between the carotid and femoral anatomical sites using 
Vicorder® software [33, 34]. cfPWV measurements 
were obtained using inflated cuffs placed around the 
neck and the right upper thigh to detect the carotid and 
femoral pulses. The cuffs were automatically inflated 
to 65 mmHg, and pulse waveforms were recorded for 
3.5 s while the participant was in a supine position. The 
display screen was then frozen, and the cfPWV meas-
urement was obtained. Consistency of waveforms was 
ensured by recording during a stable period, without 
participant movements; if inconsistencies were detected, 
the assessment was repeated. ICA diameter and blood 
flow parameters, including maximum systolic and dias-
tolic velocities and downstream flow resistance (resis-
tive index; RI), were measured using a high-frequency 
linear probe (L15-4 MHz) of a high-resolution ultra-
sound system (Terason 3200T). The ICA diameter was 
determined as the average of three cardiac cycles using 
automated edge-detection software (Cardiovascular 
Suite Quipu) from B-mode ultrasound images. ICA peak 
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systolic velocity was measured by placing a caliper over 
the maximum systole of three spectral waveforms, with 
the average considered for analysis. The cursor angle was 
set at 60˚ along the direction of the flow, and this angle 
was used for all participants. Control settings for carotid 
ultrasound imaging, including depth, focal point, pulse 
repetition frequency, color box position, and gain in the 
spectral display, were optimized to ensure accurate ves-
sel wall detection and clear Doppler signals, minimiz-
ing background noise for precise caliper placement. ICA 
blood flow parameters and diameters were assessed at 
1–2 cm distal to the carotid bulb, where the ICA lumen 
is uniform [35, 36].

2.3 � Statistical Analysis
Pearson’s correlation coefficient was used for parametric 
variables and Spearman’s rank correlation coefficient for 
non-parametric variables. A significance level of 0.05 was 
set for all tests. Statistical analysis was performed using 
IBM SPSS Statistics version 21 (Armonk, NY: IBM Corp).

3 � Results
Thirty-six healthy subjects (23 males and 13 females) 
were recruited for this study. Participant characteristics 
are summarized in Table 1.

3.1 � Correlations Between cfPWV, Age, and BMI
Significant positive correlations were found between 
cfPWV and age (Spearman’s rho coefficient 0.33, p = 0.04; 
Fig.  1A), and cfPWV and BMI (Spearman’s rho coeffi-
cient 0.32, p = 0.05; Fig. 1B).

3.2 � Correlation Between cfPWV and ICA Blood Flow
There was a significant positive correlation between 
cfPWV and ICA diameter (Pearson’s coefficient 0.35, 
p = 0.03; Fig.  2A). No significant correlations were 
observed between cfPWV and ICA-PSV (Spearman’s rho 
coefficient − 0.20, p = 0.22; Fig.  2B), or ICA-RI (Spear-
man’s rho coefficient 0.05, p = 0.76; Fig. 2C).

3.3 � Correlation Between Age and ICA Blood Flow
There were no significant correlations between age and 
ICA diameter (Spearman’s rho coefficient 0.13, p = 0.42; 
Fig.  3A), ICA-PSV (Spearman’s rho coefficient − 0.28, 
p = 0.09; Fig. 3B), or ICA-RI (Spearman’s rho coefficient 
-0.02, p = 0.89; Fig. 3C).

Table 1  Participant characteristics

BMI body mass index, cfPSV carotid-femoral peak systolic velocity, DBP diastolic 
blood pressure, ICA internal carotid artery, mmHg millimeter of mercury, PSV 
peak systolic velocity, RI resistive index, SBP systolic blood pressure, SD standard 
deviation

Characteristics Descriptive statistics (mean ± SD)
Healthy subject (n = 36)

Age (years) 28.5 ± 5.9

Weight (kg) 73.2 ± 13.6

Height (m) 1.72 ± 0.09

BMI 24.4 ± 3.3

SBP (mmHg) 116.4 ± 11.2

DBP (mmHg) 71.1 ± 7

cfPWV (m/s) 6.4 ± 0.8

ICA-D (mm) 4.86 ± 0.6

ICA-PSV (m/s) 0.81 ± 0.1

ICA-RI 0.62 ± 0.06

Fig. 1  Correlation of aortic stiffness, measured through carotid-femoral pulse wave velocity (cfPWV), with A age and B body mass index (BMI). 
*p ≤ 0.05 using Spearman’s rank correlation
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4 � Discussion
In this study, we observed a positive correlation between 
arterial stiffness, estimated using cfPWV, and both age 
and BMI in healthy young adults. Participants had a mean 
age of 28.5 years and a mean BMI of 24.4. These find-
ings align with previous research indicating that cfPWV 
increases with age [37–40]—a factor that should be con-
sidered when establishing reference values in elderly pop-
ulations [16]. The well-established age-related increase in 
arterial stiffness is attributed to gradual cardiovascular 
function decline, and is one of the earliest pathophysio-
logical processes, constituting an independent risk factor 
for CVD [16, 41]. The arterial walls undergo mechanical 
degradation with aging, characterized by the fraying of 

elastin structures and the formation of crosslinked col-
lagen fibers due to advanced glycation end-products, 
ultimately leading to a gradual increase in arterial stiff-
ness [42, 43]. Obesity is well-reported to negatively 
impact the function of large arteries—a process that may 
be attributed to metabolic dysregulation and inflamma-
tory processes [44]. Several indicators of vascular func-
tion, including the stiffness index, central and peripheral 
augmentation index, and central and peripheral pulse 
pressure, have been found to correlate with body fat, sug-
gesting that obesity contributes to arterial remodeling 
and hemodynamic changes [45, 46]. Positive associations 
between adiposity measures, such as BMI, waist circum-
ference, waist-height ratio, and PWV have been reported 

Fig. 2  Correlation of aortic stiffness, measured through carotid-femoral pulse wave velocity (cfPWV), with A internal carotid artery diameter (ICA-D), 
B peak systolic velocity (ICA-PSV), and (C) resistive index (ICA-RI). *p ≤ 0.05 using Pearson’s correlation
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in multiple studies [47–50]. Specifically, a significant 
association between excess body weight and increased 
arterial stiffness has been observed in young adults aged 
20–30 years [50]. A recent study reported that obese 
young adults (≤ 30 years) exhibit higher PWV values and 
increased vascular stiffness compared to their non-obese 
counterparts, raising concerns about the impact of rising 
obesity rates on vascular aging [51]. Further research is 
needed to investigate the reversibility of high BMI effects 
on vascular stiffness.

Arterial stiffness can adversely affect cerebral blood 
flow and cognitive function. Associations have been 

demonstrated between arterial stiffness and reduced 
brain blood flow in adults without cardiovascular or 
neurological diseases, with arterial stiffness linked to 
decreased blood flow in the frontal and parietal white 
matter, which are susceptible to microvascular damage 
[52, 53]. Age-related arterial stiffness increases cerebro-
vascular impedance, resulting in excessive pressure and 
flow pulsatility that may result in microvascular dam-
age [54–56]. Fico et  al. (2022) investigated the associa-
tion between cfPWV and the pulsatility index in cerebral 
arteries, including ICA, using 4D flow MRI. Participant 
groups were comprised of young or older adults, with 

Fig. 3  Correlation of age with A internal carotid artery diameter (ICA-D), B peak systolic velocity (ICA-PSV), and C resistive index (ICA-RI)



Page 6 of 8Sultan ﻿Artery Research  2024, 30:7

a mean age of 33 and 62 years, respectively. A positive 
association was reported between cfPWV and the cer-
ebral arterial pulsatility index in the combined age group 
and in elderly adults (excluding ICA) but not in the young 
adult group [57]. These findings suggest age-dependent 
variations in the relationship between arterial stiffness 
(cfPWV) and the cerebral pulsatility index. The findings 
in the young adult group agreed with our study, in which 
no associations were observed between cfPWV and ICA 
blood flow or RI. We also found no significant correlation 
between age and ICA diameter, blood flow, or RI. How-
ever, a significant positive correlation between cfPWV 
and ICA diameter was observed in healthy individuals. 
This suggests that factors other than age-related elastin 
fragmentation might influence ICA diameter variations 
in this cohort. While arterial diameter typically increases 
with age due to elastin fragmentation [58, 59] and arterial 
elasticity and stiffness are not uniform across the arterial 
tree [60], the observed correlation between cfPWV and 
ICA diameter may reflect the ICA’s elasticity in healthy 
young adults. This elasticity allows the artery to adapt to 
varying blood flow and elevated arterial stiffening, high-
lighting the dynamic nature of the ICA in accommodat-
ing increased pulsatility, maintaining optimal cerebral 
blood flow, and responding to elevated arterial stiffness 
in healthy young adults.

The brain is vulnerable to excessive pulsatility due to 
its high blood flow demand and low arteriole resistance 
[61, 62]. Typically, the arterial pulse travels away from the 
heart, but increased arterial stiffness causes greater resist-
ance and pulse wave reflections, augmenting the pressure 
within the arterial system [63]. These reflected waves can 
travel back to the carotid artery, leading to carotid artery 
vasodilatation as a compensatory mechanism to maintain 
optimal brain blood flow [64]. It has been suggested that 
the elasticity of the ICA contributes to accommodating 
pressure changes and maintaining optimal cerebral blood 
flow, potentially mitigating the reduction in flow caused 
by increased arterial stiffness [65, 66]. This indicates 
that elasticity is crucial for managing vascular dynam-
ics, underscoring its importance in conditions charac-
terized by disrupted blood flow to the brain [65]. These 
highlight the importance of large conducting arteries 
like the carotid in buffering pulsatility before it reaches 
the cerebral circulation [67, 68]. Together, these find-
ings suggest that the relationship between arterial stiff-
ness and cerebral hemodynamics varies with age. Further 
research should explore the complex interplay between 
arterial stiffness, cerebral blood flow, and age-related vas-
cular changes. Understanding these mechanisms could 
contribute to the development of targeted interventions 
aimed at mitigating the adverse effects of arterial stiffness 

on cerebral hemodynamics, ultimately promoting brain 
health and cognitive function.

This study has several limitations, including its rela-
tively small sample size, which limits the ability to per-
form multiple regression analyses. Future research should 
adjust the association between cfPWV and carotid artery 
parameters for age and gender. Additionally, this study 
focused exclusively on healthy individuals, potentially 
limiting the applicability of the results to broader popu-
lations, including those with underlying health condi-
tions. Furthermore, the assessment of arterial stiffness 
was based on cfPWV and ICA blood flow parameters, 
overlooking the potential impact of other arterial seg-
ments and their contributions to cerebral hemodynam-
ics. Future studies should include larger and more diverse 
populations, including individuals with varying health 
conditions. Longitudinal designs and comprehensive 
assessments of multiple arterial segments and cerebral 
blood flow parameters would further enhance the cur-
rent knowledge.

5 � Conclusion
This study provides evidence of a positive correlation 
between arterial stiffness, measured by cfPWV, and 
both age and BMI in a healthy population, along with an 
increase in ICA diameter. However, no significant corre-
lations were found between cfPWV and ICA blood flow, 
or between age and ICA diameter or blood flow. These 
findings suggest that the ICA may dilate as a compensa-
tory mechanism to counteract increased arterial stiffness, 
thereby ensuring optimal cerebral blood flow in healthy 
individuals. This underscores the potential role of ICA 
elasticity in cerebral hemodynamics. Further research 
is essential in both healthy individuals and those with 
underlying health conditions to improve understanding 
of the role of arterial elasticity and stiffness in cardiovas-
cular health.
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